Approaches to X-ray CT Evaluation of In-Situ Experiments on Damage Evolution in an Interpenetrating Metal-Ceramic Composite with Residual Porosity

Author:

Schukraft JoélORCID,Lohr Christoph,Weidenmann Kay André

Abstract

AbstractAn interpenetrating metal-ceramic composite of AlSi10Mg and an open porous alumina foam, with residual porosity is investigated for the material damage under compressive load within an X-ray CT in-situ load stage. The focus of the research is on damage detection and evaluation with the commercial Avizo® software by ThermoFisher Scientific. Four different approaches are used to detect the material damage and compared afterward on their efficiency in detecting the material damage volume but not the porosity within the material. Image Stack Processing combined with different filtering techniques, as well as Digital Volume Correlation is used in this work to separate the material porosity and the material damage. For the here investigated material system with mainly spherical pores, a geometrical filter was very successful to separate porosity and damage. Nevertheless, the Digital Volume Correlation based approach showed many advantages in damage detection and turned out to be the approach of choice regarding damage onset.

Funder

Deutsche Forschungsgemeinschaft

Universität Augsburg

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3