A Method for Optimal Synthesis of a Biomimetic Four-Bar Linkage Knee Joint for a Knee-Ankle-Foot Orthosis

Author:

Bapat Ganesh M.1,Sujatha S.1

Affiliation:

1. Indian Institute of Technology Madras

Abstract

A Knee-Ankle-Foot orthosis (KAFO) is used as a supportive device by individuals with lower limb disability. A type of KAFO that allows knee flexion-extension is prescribed for people who need knee stability in the transverse and frontal planes. In such an orthosis, mimicking the human knee motion is vital to avoid relative motion (called pistoning) between the limb and the orthosis. A four-bar mechanism, owing to its polycentric nature, simplicity and ease of fabrication can provide a customizable, biomimetic solution. This paper presents an improved and robust optimization approach to synthesize a four-bar mechanism to closely mimic the anatomical knee motion. The reference human knee centrode is obtained from literature. A genetic algorithm is used for optimal synthesis of the fourbar mechanism. Results show that the average error between the reference centrode and the centrode of the synthesized four-bar mechanism is very small (0.2 mm). Thus, the synthesized crossed four-bar linkage can reproduce better anthropomorphic characteristics of the knee joint. The methodology can be used for the design of customized orthotic knee joints for KAFOs and knee braces.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Development of the Linear Actuator for Enhanced Agility in Humanoid Robot;2024 21st International Conference on Ubiquitous Robots (UR);2024-06-24

2. The effect of different mechanism combinations on sliding between brace and lower limb during walking and leg-raising;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2024-03-27

3. An interaction model for predicting brace migration and validation through walking experiment;Computer Methods in Biomechanics and Biomedical Engineering;2024-02-06

4. Design of Novel Knee Joint Mechanism of Lower-Limb Exoskeleton to Realize Spatial Motion of Human Knee;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

5. A novel method for personalized custom design of exoskeleton knee joint;2023 IEEE International Conference on Real-time Computing and Robotics (RCAR);2023-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3