Affiliation:
1. Indian Institute of Technology Madras
Abstract
A Knee-Ankle-Foot orthosis (KAFO) is used as a supportive device by individuals with lower limb disability. A type of KAFO that allows knee flexion-extension is prescribed for people who need knee stability in the transverse and frontal planes. In such an orthosis, mimicking the human knee motion is vital to avoid relative motion (called pistoning) between the limb and the orthosis. A four-bar mechanism, owing to its polycentric nature, simplicity and ease of fabrication can provide a customizable, biomimetic solution. This paper presents an improved and robust optimization approach to synthesize a four-bar mechanism to closely mimic the anatomical knee motion. The reference human knee centrode is obtained from literature. A genetic algorithm is used for optimal synthesis of the fourbar mechanism. Results show that the average error between the reference centrode and the centrode of the synthesized four-bar mechanism is very small (0.2 mm). Thus, the synthesized crossed four-bar linkage can reproduce better anthropomorphic characteristics of the knee joint. The methodology can be used for the design of customized orthotic knee joints for KAFOs and knee braces.
Publisher
Trans Tech Publications, Ltd.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献