Clustering Algorithm in Possibilistic Exponential Fuzzy C-Mean Segmenting Medical Images

Author:

Chowdhary Chiranji Lal1ORCID,Acharjya D.P.2

Affiliation:

1. VIT Univrsity

2. VIT University

Abstract

Different fuzzy segmentation methods were used in medical imaging from last two decades for obtaining better accuracy in various approaches like detecting tumours etc. Well-known fuzzy segmentations like fuzzy c-means (FCM) assign data to every cluster but that is not realistic in few circumstances. Our paper proposes a novel possibilistic exponential fuzzy c-means (PEFCM) clustering algorithm for segmenting medical images. This new clustering algorithm technology can maintain the advantages of a possibilistic fuzzy c-means (PFCM) and exponential fuzzy c-mean (EFCM) clustering algorithms to maximize benefits and reduce noise/outlier influences. In our proposed hybrid possibilistic exponential fuzzy c-mean segmentation approach, exponential FCM intention functions are recalculated and that select data into the clusters. Traditional FCM clustering process cannot handle noise and outliers so we require being added in clusters due to the reasons of common probabilistic constraints which give the total of membership’s degree in every cluster to be 1. We revise possibilistic exponential fuzzy clustering (PEFCM) which hybridize possibilistic method over exponential fuzzy c-mean segmentation and this proposed idea partition the data filters noisy data or detects them as outliers. Our result analysis by PEFCM segmentation attains an average accuracy of 97.4% compared with existing algorithms. It was concluded that the possibilistic exponential fuzzy c-means segmentation algorithm endorsed for additional efficient for accurate detection of breast tumours to assist for the early detection.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3