Optimal Fuzzy Cluster Partitioning by Crow Search Meta-Heuristic for Biomedical Data Analysis

Author:

Nayak Janmenjoy1ORCID,Naik Bighnaraj2ORCID,Dash Pandit Byomakesha3ORCID,Pelusi Danilo4ORCID

Affiliation:

1. Aditya Institute of Technology and Management, India

2. Veer Surendra Sai University of Technology (VSSUT), Odisha, India

3. Veer Surendra Sai University of Technology, Burla, India

4. University of Teramo, Italy

Abstract

Biomedical data is often more unstructured in nature, and biomedical data processing task is becoming more complex day by day. Thus, biomedical informatics requires competent data analysis and data mining techniques for designing decision support system's framework to solve clinical and heathcare-related issues. Due to increasingly large and complex data sets and demand of biomedical informatics research, researchers are attracted towards automated machine learning models. This paper is proposed to design an efficient machine learning model based on fuzzy c-means with meta-heuristic optimizations for biomedical data analysis and clustering. The main contributions of this paper are 1) projecting an efficient machine learning model based on fuzzy c-means and meta-heuristic optimization for biomedical data classification, 2) employing benchmark validation techniques and critical hypothesises testing, and 3) providing a background for biomedical data processing with a view of data processing and mining.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3