Synthesis of CeO2-SiO2 Composite Nanoparticles by Coprecipitation Method and Dispersion Stability of their Suspension

Author:

Song Xiao Lan1,Lin Kang1,Duan Hai Long1,Xiao Yan1,Zhuang Huang1,Zhang Hua Wei1,Jiang Nan1

Affiliation:

1. Central South University

Abstract

A series of CeO2-SiO2composite nanoparticles with different cerium and silica (Ce/Si) mole ratios were synthesized via a coprecipitation method using cerium nitrate, tetraethylorthosilicate and ammonia as raw materials. X-ray diffraction (XRD), fourier transform infrared spectrology (FT-IR), thermogravimetry-differential scanning calorimetry (TG/DSC), transmission electron microscopy (TEM) and energy dispersive analysis of X-ray (EDAX) were used to characterize the CeO2-SiO2nanoparticles. With the increase of CeO2content, the crystal of CeO2grew up gradually and the average crystallite size of the CeO2decreased. There are Ce-O-Si bonds in the CeO2-SiO2composite nanoparticles. The particle size of the CeO2-SiO2composite nanoparticles with a Ce/Si mole ratio of 1 is about 20–30 nm. The dispersion stability of the CeO2-SiO2composite nanoparticles with a Ce/Si mole ratio of 1 was studied. It was found that cationic and nonionic surfactant could obviously affect the dispersion stability of suspension, but not the anion surfactant. A suspension with CeO2-SiO2composite nanoparticles at 0.1 wt% was added in 0.1 g/L cationic surfactant CTAB, and its pH value was adjusted within the range of 10-10.5. In this condition, the stable suspension without sedimentation time was successfully obtained.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3