Affiliation:
1. National Institute of Technology Patna
Abstract
TiC – Fe composite coating was produced on AISI 1020 steel by the tungsten inert gas (TIG) cladding process to increase the hardness and wear resistance properties of the substrate. In this paper authors have investigated the effect of process parameters on the microstructure and hardness value of the coated layer. In this TIG cladding process the variable parameter is only current, whereas the other parameters such as scanning speed, standoff distance, and voltage and gas flow rate are fixed. Fe and TiC powders were mixed in the proper ratio of 80wt% - 20wt% and 90wt% - 10wt% respectively. The microstructure and micro-hardness value of the samples were investigated by the scanning electron microscope (SEM) and Vickers micro hardness tester. The result of SEM shows the distribution of the coating powder in the cladded zone. Micro hardness profile shows the variation of the hardness value in the cladded zone as well as in the substrate. The hardness value decreases with increase in distance from top surface of the cladded layer, which is due to difference in cooling rate. Also, the hardness value of cladded layer decreases with increase in current from 140A to 150A. The maximum hardness value of cladded layer was achieved as 262 HV0.05with 140A current and composition of 90 wt.% - 10wt% (Fe - TiC), which was nearly two times higher than that of the as received AISI 1020 steel substrate. Keywords TIG, Microstructure, Micro hardness, Titanium Carbide (TiC), Iron (Fe) powder.
Publisher
Trans Tech Publications, Ltd.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献