Changes in Acidithiobacillus ferrooxidans Ability to Reduce Ferric Iron by Elemental Sulfur

Author:

Kucera Jiri1,Pakostova Eva1,Janiczek Oldrich1,Mandl Martin1

Affiliation:

1. Masaryk University

Abstract

Ferric iron may act as a thermodynamically favourable electron acceptor during elemental sulfur oxidation byAcidithiobacillus ferrooxidansin extremely acidic anoxic environments. A loss of anaerobic ferric iron reduction ability has been observed in ferrous iron-grownA. ferrooxidansCCM 4253 after aerobic passaging on elemental sulfur. In this study, iron-oxidising cells aerobically adapted from ferrous iron to elemental sulfur were still able to anaerobically reduce ferric iron, however, following aerobic passage on elemental sulfur it could not. Preliminary quantitative proteomic analysis of whole cell lysates of the passage that lost anaerobic ferric iron-reducing activity resulted in 150 repressed protein spots in comparison with the antecedent culture, which retained the activity. Identification of selected protein spots by tandem mass spectrometry revealed physiologically important proteins including rusticyanin and outer-membrane cytochrome Cyc2, which are involved in iron oxidation. Other proteins were associated with sulfur metabolism such as sulfide-quinone reductase and proteins encoded by the thiosulfate dehydrogenase and heterodisulfide reductase complex operons. Furthermore, proteomic analysis identified proteins directly related to anaerobiosis. The results indicate the importance of iron-oxidising system components for anaerobic sulfur oxidation in the studied microbial strain.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3