Stagnation Point Flow with Heat Transfer and Temporal Stability of Ferrofluid Past a Permeable Stretching/Shrinking Sheet

Author:

Makinde Oluwole Daniel1

Affiliation:

1. Stellenbosch University

Abstract

In this paper, the hydromagnetic stagnation point flow and temporal stability of Fe3O4-water ferrofluid over a convectively heated permeable stretching/shrinking sheet is theoretically investigated. The model equations of momentum and energy balance are obtained and transformed into ordinary differential equations using appropriate similarity variable. Using shooting method together with Runge-Kutta-Fehlberg numerical scheme the model nonlinear boundary value problem is tackled numerically. Pertinent results with respect to the basic steady flow velocity, temperature, skin friction and Nusselt number are obtained graphically and in tabular form. It is found that a critical value of shrinking parameter (λc) exists below which no real solution can be found. In addition, dual solutions (upper and lower branch) are observed for a range of shrinking/stretching parameter (λc<λ< 1), while for the stretching case (λ 1), the solution is unique. The obtained steady state solutions are examined for temporal development of small disturbances. The smallest eigenvalues reveal that the upper solution branch is stable and physically reliable while the lower solution branch is unstable and unrealistic. Both suction and magnetic field widen the range of the shrinking parameter for which the solution exists and boost the flow stability while nanoparticles volume fraction lessens it.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3