Stagnation Point Flow of CoF e 2 O 4 / Ti O 2 - H 2 O -Casson Nanofluid past a Slippery Stretching/Shrinking Cylindrical Surface in a Darcy–Forchheimer Porous Medium

Author:

Duguma Kifle Adula1ORCID,Makinde Oluwole Daniel2ORCID,Enyadene Lemi Guta1

Affiliation:

1. Department of Applied Mathematics, Adama Science and Technology University, Adama, Oromia, Ethiopia

2. Faculty of Military Science, Stellenbosch University, Stellenbosch, South Africa

Abstract

Mounting temperatures in electronic devices during operation may damage sensitive internal components if too much thermal energy accumulates inside the system. The advent of an innovative ultrahigh-performance thermal management technology known as nanofluid has provided a veritable platform to improve the system performance and reliability by removing the high heat flux generated in the engineering and industrial devices. This paper examines the combined effects of Darcy–Forchheimer porous medium-resistant heating and viscous dissipation on stagnation point flow of a Casson nanofluid ( CoF e 2 O 4 - H 2 O and Ti O 2 - H 2 O ) towards a convectively heated slippery stretching/shrinking cylindrical surface in a porous medium. The governing nonlinear model equations are obtained, analysed, and tackled numerically via the shooting technique with the Runge–Kutta–Fehlberg integration scheme. A unique solution is obtained when the surface is stretching. For shrinking cylindrical surface, the model exhibits nonunique dual solutions for a defined range of parameter values, and a temporal stability analysis is conducted to ascertain the stable and physically achievable solution. The effects of emerging thermophysical parameters on the overall flow structure and thermal management such as velocity and temperature profiles, skin friction, and Nusselt number are quantitatively discussed through graphs and in tabular form. It is found that the thermal performance heat transfer enhancement capability of Ti O 2 - H 2 O is higher than that of CoF e 2 O 4 - H 2 O . Moreover, the nanofluid thermal performance is enhanced with nanoparticles volume fraction, Casson nanofluid parameter, and Biot number but lessened with porous medium permeability.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3