Affiliation:
1. Instituto Tecnológico de Aeronáutica
2. Instituto de Pesquisas Energéticas e Nucleares (IPEN)
3. Universidade Presbiteriana Mackenzie
4. Aeronautic Technological Institute (ITA)
Abstract
Aluminum alloys have low specific weight, relatively high strength and high corrosion resistance and are used in many applications. Aluminum Alloy 2024 is widely used for aircraft fuselage structures, owing to its mechanical properties. In this investigation, Aluminum Alloy 2024 was given solid solution treatments at 495, 505, and 515°C followed by quenching in water. It was then artificially aged at 190 and 208°C. Subsequently, hardness measurements, tensile tests as well as impact and fatigue tests were carried out on the heat treated alloys to determine the mechanical properties. The tensile and hardness tests revealed similar mechanical properties for specimens of this alloy that were given the three solid solution treatments. Aluminum Alloy 2024 specimens that were solid solution treated at 515°C and artificially aged at 208°C for 2h exhibited the highest yield and tensile strength. In general, the increase in strength was accompanied by a decrease in ductility. Cyclic fatigue studies were conducted with symmetric tension-compression stresses at room temperature, using a bending-rotation test machine. The alloy solution heat treated at 515°C and aged at 208°C/2h was fatigue tested at constant frequency. The relation between stress amplitude and cycles to failure was established, enabling the fatigue strength to be predicted at more than 7.8x106cycles, with maximum stress of 110.23 MPa. The fracture surfaces of specimens that failed after fewer cycles showed mainly precipitates and micro voids, whereas specimens that fractured after a higher number of cycles indicated that cracks initiated at the surface. The high cycle fatigue fracture surfaces revealed pores that could be due to precipitates from the matrix.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Radiation
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献