Anisotropic Tensile and Compressive Strengths of Al-4wt.%Cu Alloy Powder: Part 2—Effect of Dendritic Arm Spacings

Author:

Bonatti Rodrigo S.1,Rodrigues João F. Q.2ORCID,Peixoto Leandro C.3,Baldo Rodrigo F. G.4,Bortolozo Ausdinir D.14,Osório Wislei R.14ORCID

Affiliation:

1. School of Technology/FT, Campus I, University of Campinas/UNICAMP, Limeira 13484-332, Brazil

2. Faculty of Mechanical Engineering, FEM, University of Campinas/UNICAMP, Campinas 13083-876, Brazil

3. Federal Institute of São Paulo, IFSP, Caraguatatuba 11665-071, Brazil

4. School of Applied Sciences, FCA, Research Group in Manufacturing Advanced Materials (CPMMA), Campus II, University of Campinas/UNICAMP, Limeira 13484-350, Brazil

Abstract

This investigation focuses on the effects of the compaction directions (i.e., transversal and longitudinal) and microstructural arrays (inside the powder utilized to constitute the specimens) on the anisotropic strengths. The initial powders are obtained from the as-cast Al-4 wt.% Cu alloys solidified in two distinct cooling rates, i.e., ~0.5 and 2.5 °C/s. The powder particles are compacted by using 300, 400 and 600 MPa and sintered at 540 °C for 1 h. The compressive and tensile strengths are carried out and the anisotropic strengths are determined. It is found that transverse samples exhibit higher UCS (ultimate compressive strength) and UTS (ultimate tensile strength) than the longitudinal samples. It is also found that the powder compacted in the transversal direction and utilizing powder with finer dendritic arm spacing provides better UCS and UTS results. The novelty in the study concerns the fact that is evidenced in the role of the dendrite spacings concatenated with the compaction pressure and direction upon the mechanical behavior. It is concluded that depending on the compaction level intended or demanded mechanical behavior, the planning in the compaction direction is preprogrammed. Since recycled powder particles from conventional machining, drilling and turning can potentially be utilized to constitute parts and components, the environmentally friendly aspects are associated, and hazardous stages in a manufacturing process are substantially reduced or eliminated.

Funder

FAEPEX-UNICAMP

CAPES

CNPq

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3