Application of 6H to 4H Polytype Conversion to Effective Reduction of Micropipes in 4H SiC Crystals

Author:

Grasza Krzysztof1,Tymicki Emil1

Affiliation:

1. Institute of Electronic Materials Technology

Abstract

Bulk crystals of 6H and 4H silicon carbide have been grown by PVT method. 6H-SiC were obtained in optimized near-to-equilibrium growth conditions in order to improve the crystal quality and to provide the 6H seeds for 6H to 4H-SiC conversion. In experiments of 6H to 4H polytype transformation a set of invariable growth conditions was applied: C-face seed, C-rich atmosphere, on-axis seed orientation, pre-heating of the source material, slightly convex crystallization front and optimized geometry of the growth system. Other growth parameters were varied to optimize the polytype conversion, e.g.: structural quality of the seed, intentionally added impurity (N and/or Sc), initial growth stage recipe, argon pressure and temperature gradient - resulting in variety of growth rates and temperatures of the seed. Special attention was paid to seed passivation and a scheme of temperature and inert gas pressure changes during growth. Crystals were characterized by KOH etching, X-ray diffraction, optical and AFM microscopy. A reproducible method of 75% efficient conversion was elaborated. A large central surface free of micropipes was observed with characteristic six symmetrical ridges as well as the increased concentration of nitrogen. The parasitic 15R-SiC polytype was nucleated on the vicinal part of the crystallization front of 6H-SiC and 4H-SiC crystals.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3