Abstract
Using impedance spectroscopy (IS) for characterization of the electrical properties and gas sensing characteristics of Al2O3/4H-SiC (MOS) structures, insight on the capacitive and resistive contributions in the interfacial region of the MOS structures is obtained. Applying DC bias voltages between accumulation and depletion (corresponding to the interfacial region) allows investigation of the voltage shift of the capacitance versus voltage (CV) curve at different temperatures and atmospheres. This voltage shift forms the basis to use the MOS structure as a gas sensor. The MOS capacitance, as extracted from IS data, is different from the one obtained using CV measurements, due to the ability of distinguishing the resistive contribution (using IS). Voltage shifts between 1 and 2 V are clearly revealed during exposure to hydrogen and oxygen, and this shift exhibits a long-term stability of operation at temperatures up to 500°C. Hence, Al2O3 exhibits great promise as a gate dielectric in MOS-based gas detecting devices for use at elevated temperatures.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献