Microstructural Characteristics of Laser Metal Deposited Magnesium Alloy AZ31

Author:

Riekehr Stefan1,Ventzke Volker1,Konovalovna Anna1,Kashaev Nikolai1,Enz Josephin1

Affiliation:

1. Helmholtz-Zentrum Geesthacht

Abstract

Up to now, only a limited amount of metallic materials is investigated for laser additive manufacturing (LAM). However, the demand to widen the application possibilities by enlarging the range of materials for LAM is growing fast. By now, titanium and aluminium alloys are in the focus of research. In contrast, magnesium alloys are rarely used in the field of additive manufacturing, although they possess a low density in combination with a high specific strength. Currently, magnesium structures are mainly produced by casting but during the last years, the use of wrought alloys also increased. A reason for the rare use of magnesium alloys for LAM technologies might be the high flammability of magnesium powders. This difficulty can be avoided by using magnesium wire for laser metal deposition (LMD). In the present study, the microstructural characteristics of a LMD processed AZ31 magnesium alloy are investigated. For this purpose, optical microscopy and scanning electron microscopy were used. With the help of EDX and EBSD analysis, a change of the chemical composition and micro texture with structure height was identified. The relationship of microstructure and local mechanical properties was investigated with the help of Vickers micro hardness testing. Based on the obtained results it can be concluded that the microstructural characteristics of laser additive manufactured magnesium alloys differ from those of titanium and aluminium alloys. Thus, a wider application spectrum of LMD and magnesium alloys can be opened up.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3