Nickel Supported Modified Ceria Zirconia Lanthanum/ Praseodymium/Yttrium Oxides Catalysts for Syngas Production through Dry Methane Reforming

Author:

Liu Hong Rui1,Świrk Katarzyna2,Galvez Maria Elena1,da Costa Patrick1

Affiliation:

1. Sorbonne Université

2. AGH University and Sorbonne Université

Abstract

Dry methane reforming (DRM) has recently received considerable attention as a perspective CO2 utilization technology allowing the valorization natural gas and biogas. The commercialization of the DRM process depends on the use of more stable and active catalysts. The nickel-based catalysts are commonly used in the DRM reaction as they are effective in hydrogen production and nickel is a less expensive material compared to noble metals. However, Ni-based catalysts undergo fast deactivation. The stability of nickel catalysts in DRM reaction may be enhanced by introduction of supports or promoters with basic and/or redox properties. Thus, in this work, Ceria-Zirconia supports were modified by rare earth metals such as Lanthanum, Praseodymium and Yttrium in order to stabilize the raw materials and to promote the catalytic activity. Nickel was then impregnated on such supports and the modified catalysts were tested in dry methane reforming for syngas production since it was already reported that a promotion with nickel and yttrium lead to better activity in DRM catalytic tests over mesoporous materials. All promoted catalysts were characterized by the means of SBET, XRD, TEM, H2-TPR, CO2-TPD in order to define the physical, textural and chemical properties. The influence of basicity on the catalytic activity was clearly evidenced. Moreover, the influence of Nickel loading was also studied. It was evidenced that an optimal Ni loading is needed in order to reach higher activity and stability in DRM.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3