Methane Dry Reforming over Ni/NiO Supported on Ce-, Zr-, and Al-Modified Y2O3 for Hydrogen Production

Author:

Chen Zijian1,Mao Lei1,Fang Xiuzhong1,Xu Xianglan1,Xu Junwei1,Wang Xiang1

Affiliation:

1. Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China

Abstract

In this work, Ce, Zr, and Al are used to promote Y2O3 as supports for Ni/NiO, with the expectation to obtain more efficient catalysts for DRM reaction. XRD and Raman results have testified that all the three cations have been doped into the lattice of Y2O3 to form a solid solution structure, thus obtaining supports with decreased crystallinity and improved surface areas. As a result, all the modified catalysts display evidently improved reaction performance. The Ni–support interaction of the modified catalysts is enhanced in comparison with the unmodified catalyst, thus having improved Ni dispersion. Moreover, the modified catalysts have improved alkalinity, which is beneficial to activate CO2 and enhance the activity. In addition, it is found that all the modified catalysts possess a richer amount of surface active oxygen species (O2δ− and O2−), which is critical to eliminate carbon depositions. It is believed that the interaction of these factors is responsible for the enhanced DRM performance of the modified catalysts. In situ DRIFTS results have confirmed that the addition of the secondary metals can improve the DRM activity of the catalyst by accelerating the conversion of formate intermediate species.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Xinjiang Uygur Autonomous Region

Natural Science Foundation of Jiangxi Province

Key Laboratory Foundation of Jiangxi Province for Environment and Energy Catalysis

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3