Characteristics of Large Area Perovskite Solar Cells from Electrodes of Used Car Batteries

Author:

Bahtiar Ayi1,Agustin Cyntia1,Nurazizah Euis Siti1,Aprilia Annisa1,Hidayat Darmawan2

Affiliation:

1. Padjadjaran University

2. Universitas Padjadjaran

Abstract

Power conversion efficiency (PCE) of perovskite solar cells increases very rapidly and more than 22% is already achieved. However, some problems still need to be resolved for mass production and commercialization, including reducing production costs and development of large area solar cells. The best PCE is reached by very small active area, mostly below 0.5 cm2 which is mostly produced by spin-coating technique. Moreover, the perovskite precursor materials, mostly lead (II) iodide (PbI2) and hole-transport materials (HTM) Spiro-OMeTAD are expensive material in perovskite solar cells. Therefore, the use of low-cost perovskite precursors and low-cost HTM materials is one way to reduce the whole production costs of perovskite solar cells. Nowadays, many groups have been developed HTM-free perovskite solar cells using carbon-based mesoscopic solar cells for low cost production and large area perovskite solar cells, although the PCE of large area perovskite solar cells is still half than that very small area prepared by spin-coating technique. Here, we report our recent study to fabricate perovskite solar cells using mesoscopic carbon-based structure consisting of glass/ITO/TiO2/ZrO2/perovskite/carbon with active area larger than 1 cm2 by use of simple screen printing technique in ambient air with high humidity. We also synthesize PbI2 as perovskite precursor material from electrodes of used car battery to reduce the cost of solar cells production. Although, the PCE is still much lower than that reported by other groups, however, our study shows that perovskite solar cells from used car battery and with active area more than 1 cm2 can be fabricated in ambient air with high humidity by use of simple screen printing technique.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3