Improved the Performance and Stability at High Humidity of Perovskite Solar Cells by Mixed Cesium-Metylammonium Cations

Author:

Bahtiar Ayi1,Yazibarahmah Rizka1,Aprilia Annisa1,Hidayat Darmawan1

Affiliation:

1. Universitas Padjadjaran

Abstract

Perovskite solar cells have a great potential as competitor of silicon solar cells which have been dominated the market of solar cells since last decade, due to a tremendous improvement of their power conversion efficiency (PCE). Recently, a PCE of perovskite solar cells above 23% have been obtained. Moreover, perovskite solar cells can be fabricated using simple solution methods, therefore, the whole cost production of solar cells is less than half of silicon solar cells. However, their low stability in thermal and high humidity hinder them to be produced and commercially used to replace silicon solar cells. Many efforts have been done to improve both PCE and stability, including mixed inorganic-organic cations, mixed halide anions, improvement of perovskite morphology or crystallinity and using small molecules for passivation of defect in perovskite. In this paper, we used mixed cesium-methylammonium to improve both PCE and stability of perovskite solar cells. Cesium was used due to its smaller ionic radius than methylammonium (MA) ions, therefore, the crystal structure of perovskite is not distorted. Moreover, perovskite cesium-lead-bromide (CsPbBr3) are more stable than that of MAPbBr3 and doping cesium increased light absorption in perovskite MAPbBr3. We studied the effect of mixed cesium-MA on the PCE and stability at high humidity (>70%). The percentage of cesium was varied at 0%, 5%, 10%, 15% and 20%. The perovskite solar cells have monolithic hole-transport layer free (HTL-free) structure using carbon as electrode. This structure was used due simple and low cost in processing of solar cells. Our results showed that by replacing 10% of MA ions with Cs ions, both PCE and stability at high humidity are improved.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3