Improved the Performance and Stability at High Humidity of Perovskite Solar Cells by Mixed Cesium-Metylammonium Cations
-
Published:2020-08
Issue:
Volume:860
Page:9-14
-
ISSN:1662-9795
-
Container-title:Key Engineering Materials
-
language:
-
Short-container-title:KEM
Author:
Bahtiar Ayi1, Yazibarahmah Rizka1, Aprilia Annisa1, Hidayat Darmawan1
Affiliation:
1. Universitas Padjadjaran
Abstract
Perovskite solar cells have a great potential as competitor of silicon solar cells which have been dominated the market of solar cells since last decade, due to a tremendous improvement of their power conversion efficiency (PCE). Recently, a PCE of perovskite solar cells above 23% have been obtained. Moreover, perovskite solar cells can be fabricated using simple solution methods, therefore, the whole cost production of solar cells is less than half of silicon solar cells. However, their low stability in thermal and high humidity hinder them to be produced and commercially used to replace silicon solar cells. Many efforts have been done to improve both PCE and stability, including mixed inorganic-organic cations, mixed halide anions, improvement of perovskite morphology or crystallinity and using small molecules for passivation of defect in perovskite. In this paper, we used mixed cesium-methylammonium to improve both PCE and stability of perovskite solar cells. Cesium was used due to its smaller ionic radius than methylammonium (MA) ions, therefore, the crystal structure of perovskite is not distorted. Moreover, perovskite cesium-lead-bromide (CsPbBr3) are more stable than that of MAPbBr3 and doping cesium increased light absorption in perovskite MAPbBr3. We studied the effect of mixed cesium-MA on the PCE and stability at high humidity (>70%). The percentage of cesium was varied at 0%, 5%, 10%, 15% and 20%. The perovskite solar cells have monolithic hole-transport layer free (HTL-free) structure using carbon as electrode. This structure was used due simple and low cost in processing of solar cells. Our results showed that by replacing 10% of MA ions with Cs ions, both PCE and stability at high humidity are improved.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Reference12 articles.
1. K.A. Bush, A.F. Palmstrom, Z. Yu, M. Boccard, R. Cheacharoen, J.P. Mailoa, D.P. McMeekin, R.L.Z. Hoye, C.D. Bailie, T. Leijtens, I.M. Peters, M.C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H.J. Snaith, T. Buonassisi, Z.C. Holman, S.F. Bent, M.D. McGehee, 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nat. Energy 2 (2017), 17009 (4 pages). 2. K.A. Bush, S. Manzoor, K. Frohna, Z. J. Yu, J.A. Raiford, A.F. Palmstrom, H.P. Wang, R. Prasanna, Z.C. Holman, M.D. McGehee, Minimizing current and voltage losses to reach 25% efficient monolithic two-terminal perovskite−silicon tandem solar cells, ACS Energy Lett. 3 (2018), 2173−2180. 3. Z. Yang, Z. Yu, H. Wei, X. Xiao, Z. Ni, B. Chen, Y. Deng, S.N. Habisreutinger, X. Chen, K. Wang, J. Zhao, P.N. Rudd, J.J. Berry, M.C. Beard, J. Huang, Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells, Nat. Commun. 10 (2019), 4498 (9 pages). 4. Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov, S.I. Seok, M.D. McGehee, E.H. Sargent, H. Han, Challenges for commercializing perovskite solar cells, Science 361 (2018) 1-7. 5. Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan, L. Chen, Y. Chen, Recent progress on the long-term stability of perovskite solar cells, Adv. Sci. 5 (2018), 1700387 (17 pages).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|