Affiliation:
1. Fraunhofer Institute IISB
2. SiCED Electronics Development
Abstract
4H-SiC homoepitaxial layers with different thicknesses from 12.5 µm up to 50 µm were investigated by microwave-detected photoconductivity decay (µ-PCD), deep level transient spectroscopy (DLTS) and defect selective etching (DSE) to shed light on the influence of the epilayer thickness and structural defects on the effective minority carrier lifetime. It is shown that the effective lifetime, resulting directly from the µ-PCD measurement, is significantly influenced by the surface recombination lifetime. Therefore, an adequate correction of the measured data is necessary to determine the bulk lifetime. The bulk lifetime of these epilayers is in the order of several microseconds. Furthermore, areas with high dislocation density are correlated to areas with locally reduced effective lifetime.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献