Hourly Photovoltaics Power Output Prediction for Malaysia Using Support Vector Regression

Author:

Baharin Kyairul Azmi1,Abd Rahman Hasimah1,Hassan Mohammad Yusri1,Gan Chin Kim2

Affiliation:

1. Universiti Teknologi Malaysia

2. Universiti Teknikal Malaysia Melaka

Abstract

Reliable solar energy forecasting enables grid operators to manage the grid better as PV penetration level increases. This research explores the use of support vector regression to forecast hourly power output from a grid-connected PV system in Malaysia. Data is obtained from a grid-connected PV system that is equipped with a weather monitoring station. Three parameters are used as input to the forecast model; global irradiance, tilted irradiance and ambient temperature. Results were compared against a persistence model. The SVR model manages to forecast hourly power production with satisfactory accuracy.

Publisher

Trans Tech Publications, Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Comparison of Support Vector Regression, Random Forest and Multiple Linear Regression to Forecast the Power of Photovoltaic Panels;2021 9th International Renewable and Sustainable Energy Conference (IRSEC);2021-11-23

2. Research on the voltage prediction of unmanned aerial vehicle photovoltaic modules based on new combination optimization algorithm;International Transactions on Electrical Energy Systems;2019-02-14

3. Short Term Photo Voltaic Power Prediction Using R-ELM Algorithm;2018 2nd International Conference on Data Science and Business Analytics (ICDSBA);2018-09

4. A Short-Term Photovoltaic Power Prediction Model Based on an FOS-ELM Algorithm;Applied Sciences;2017-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3