Photovoltaic Power Generation Forecasting Model with Improved Support Vector Machine Regression Based on Rough Set and Similar Day

Author:

Mei Hua Wei1,Ma Juan Juan1

Affiliation:

1. North China Electric Power University

Abstract

To diminish the effect of photovoltaic (PV) randomization on the power system, combining attribute reduction of rough set with support vector machine (SVM) regression theory, this paper applies SVM regression to directly forecast the output of the PV array, and is based on setting rough set as front-end processor and attribute reduction of historical data. According to the type of forecasting day, this paper selects multiple reasonable similar days (SD) from historical data and uses RS-SVR model to make predication. After repeated accuracy verification, the text used radial basis function as kernel function, and use parametric search and cross-validation method to determine the parameters. Finally, this paper compared average relative error of the RS-SVR forecasting model and SVR forecasting model, and verified that the RS-SVR forecasting model can effectively solve the problem of PV power output forecasting and obtain satisfactory results.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference9 articles.

1. Jing Lu , Haiqing Di, Chun Liu, et al. East China Electric Power, 2010, 38(4): 563-567. In Chinese.

2. Ming Ding, Ningzhou Xu. Power System Technology, 2011, 35(1): 152-157. In Chinese.

3. Changsong Chen, Shanxu Duan, Jinjun Yin. Transactions of China Electro technical Society, 2009, 24(9): 153-158. In Chinese.

4. Weiren Mo, Boming Zhang , Hongbin Sun, et al. Journal of Tsinghua University: Science and Technology, 2004, 44(1): 106-109. In Chinese.

5. Shuang Gao, Lei Dong, Yang Gao, Xiaozhong Liao. Proceedings of the CSEE, 2012, 32(1): 32-36. In Chinese.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3