Affiliation:
1. Xi’an University of Architecture and Technology, Shaanxi, Xi’an, China
Abstract
Energy consumption prediction can provide reliable data support for energy scheduling and optimization of office buildings. It is difficult for traditional prediction model to achieve stable accuracy and robustness when energy consumption mode is complex and data sources are diverse. Based on such situation, this paper raised an approach containing the method of comprehensive similar day and ensemble learning. Firstly, the historical data was analyzed and calculated to obtain the similarity degree of meteorological features, time factor and precursor. Next, the entropy weight method was used to calculate comprehensive similar day and applied to the model training. Then the improved sine cosine optimization algorithm (SCA) was applied to the optimization and parameter selection of a single model. Finally, an approach of model selection and integration based on dominance was proposed, which was compared with Support Vector Regression (SVR), Back Propagation Neural Network (BPNN), Long Short-Term Memory (LSTM), with a large office building in Xi ‘an taken as an example to analysis showing that compared with the prediction accuracy, root mean square percentage error (RMSPE) in the ensemble learning model after using comprehensive similar day was reduced by about 0.15 compared with the BP model, and was reduced by about 0.05, 0.06 compared with the SVR and LSTM model. Respectively, the mean absolute percentage error (MAPE) was reduced by 12.02%, 6.51% and 5.28%. Compared with several other integration methods, integration model based on dominance reduced absolute error at all times. Accordingly, the proposed approach can effectively solve problems of low accuracy and poor robustness in traditional model and predict the building energy consumption efficaciously.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献