Numerical Simulation of Residual Stress in Cu-Fe-P Alloy

Author:

Hua Su Juan1,Ping Liu1,Ming Dong Qi1,Jun Li He2,Ying Xu Ying1

Affiliation:

1. Henan University of Science and Technology

2. Northwestern Polytechnical University

Abstract

The residual stress distribution of microstructure about Cu-Fe-P alloy for lead frame is simulated by finite element method of elastic-plastics deformation. The effect of the density of Fe particle on residual stress is mainly analyzed. It is indicated that the larger the density of particle is, the larger residual stress in particle and matrix near the interface is, and the larger stress difference between both the sides is. When the density of Fe particle is 35% and the compressive extent of cold rolling is 25%, in the X-direction, the stress variation of the Cu matrix is from compressive 900MPa to tensile 1480MPa, and stress of the Fe particle is about compressive 246MPa. The maximum residual stress gradient near the interface between Cu matrix and Fe particle reaches 1726MPa. The bigger stress concentration and residual stress will destroy the quality of the material. Even peelings on the surface occur. So the appearance of bigger Fe particle goes against the quality of the material, and it should be avoided as far as possible in the production of Cu-Fe-P alloy for lead frame.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3