Optimization of Lift Force of Mini Quadrotor Helicopter by Changing of Gap Size between Rotors

Author:

Aleksandrov Dmitri1,Penkov Igor2

Affiliation:

1. PLM Group

2. Tallinn University of Technology

Abstract

This paper describes comparison between virtual simulation of quadrotor flying platforms (mini UAV - Unmanned Aerial Vehicle) and real experiments. In quadrotor helicopter (quadrocopter) air flows that are going out from rotors and affecting each other were simulated. Analysis of several helicopters that have different distances between rotors on different angular velocities were compared. During virtual simulation (with CFD Computational Fluid Dynamics software) there were conducted similar to real experiments with the use of scanned rotors (with 3D scanner) and same environment conditions. These experiments were compared with real experiments. Optimal gap distance between rotors is determined, when helicopter mass is minimum and rotors are creating maximum lifting force and consuming minimum energy (minimum impact on air flows to each other).

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Drone Design Based on a Reconfigurable Unmanned Aerial Vehicle for Wildfire Management;Drones;2024-05-16

2. Evaluation of the pattern of spray released from a moving multicopter;Pest Management Science;2022-12-29

3. Study on Hovering Stability of Quadcopter System Using Enhanced PID Control Simulation;Transactions of the Korean Society of Mechanical Engineers - A;2022-09-30

4. Optimal PID control for hovering stabilization of quadcopter using long short term memory;Advanced Engineering Informatics;2022-08

5. Wake Interactions Of A Tetrahedron Quadcopter;2020 International Conference on Unmanned Aircraft Systems (ICUAS);2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3