Application of Adaptive Filtering for Weak Impulsive Signal Recovery for Bearings Local Damage Detection in Complex Mining Mechanical Systems Working under Condition of Varying Load

Author:

Zimroz Radoslaw1,Bartelmus Walter1

Affiliation:

1. Wroclaw University of Technology

Abstract

The paper shows application of an adaptive filter as a pre-processor for impulsive cyclic weak signal recovery from raw vibration signals captured from complex mechanical systems used in the industry (namely bearings used in pulleys – parts of driving units for belt conveyors). Periodic/cyclic impulses are related to local faults which cause impulse/concentric forces/stresses in kinematic pairs. Typical examples of such local faults which cause mechanical system condition change are spall/pitting on bearings elements: outer/inner races and/or rolling elements. For analyzed objects, impulses associated with local faults are masked by other signal sources. In the first part of the paper are presented objects for the better understanding of mechanical phenomena that exist in the system, then preliminary signal analysis will be performed (in time, frequency and time-frequency domain) for the identification of signal nature. Next the idea of an adaptive system and the brief description of Normalized Least Mean Square (NLMS) algorithm will be presented. Application of NLMS is better than classical LMS due to stability of the adaptation. In the last section the results of adaptive filtering for signals from bearings is discussed. Authors show application of NLMS (for the first time in literature) for the case when signals are received from machines working in industrial condition. There were made only trails when the machines were investigated in laboratory conditions.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3