End-to-End Continuous/Discontinuous Feature Fusion Method with Attention for Rolling Bearing Fault Diagnosis

Author:

Zheng Jianbo,Liao Jian,Chen Zongbin

Abstract

Mechanical equipment failure may cause massive economic and even life loss. Therefore, the diagnosis of the failures of machine parts in time is crucial. The rolling bearings are one of the most valuable parts, which have attracted the focus of fault diagnosis. Many successful rolling bearing fault diagnoses have been made based on machine learning and deep learning. However, most diagnosis methods still rely on complex signal processing and artificial features, bringing many costs to the deployment and migration of diagnostic models. This paper proposes an end-to-end continuous/discontinuous feature fusion method for rolling bearing fault diagnosis (C/D-FUSA). This method comprises long short-term memory (LSTM), convolutional neural networks (CNN) and attention mechanism, which automatically extracts the continuous and discontinuous features from vibration signals for fault diagnosis. We also propose a contextual-dependent attention module for the LSTM layers. We compare the method with the other simpler deep learning methods and state-of-the-art methods in rolling bearing fault data sets with different sample rates. The results show that our method is more accurate than the other methods with real-time inference. It is also easy to be deployed and trained in a new environment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3