In Situ Observation of Oxygen Precipitation in Silicon with High Energy X-Rays

Author:

Grillenberger Hannes1,Magerl Andreas2

Affiliation:

1. University of Erlangen-Nürnberg

2. Universität Erlangen-Nürnberg

Abstract

Oxygen precipitation in silicon has been studied in-situ by high energy X-ray diffraction. A gain of diffracted intensity is expected if an ideal crystal is distorted by growing precipitates as the diffraction mode changes from a dynamical to a more kinematical one. Irreversible changes in the intensity of a 220 and a 400 Bragg peak are detected for Czochralski grown samples only, but not in a float zone grown reference crystal. Thus, these changes are attributed to oxygen precipitation, which is confirmed by a subsequent classical ex-situ characterization. Further, the changes of the intensities of the two measured Bragg peaks are compared to each other to get the level of change in the diffraction mode from a dynamical to a kinematical one. The detection limit of the specific setup is estimated via a simulation of the defect inventory to correspond to a precipitate diameter of 50nm with the density of 6.9•109 1/cm3. The diffraction experiments are done with polychromatic and divergent X-rays generated by a laboratory source, albeit with high energy. This results in a simple and accessible setup for the characterization of oxygen precipitates.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3