Investigation of Hybridization Efficiency of a Sequence-Orientated Coaxial DNA Probe Microarryed on Biochips Using Atomic Force Microscope

Author:

Wu Jui Chuang1,Yang Dan Kai1,Lin Yane Shu1,Chen Jun Yi1

Affiliation:

1. Chung-Yuan Christian University

Abstract

Two sequence-inversed probes were microarrayed on glass slides to study the hybridization efficiency with their DNA targets. A fluorescence laser scanner and an atomic force microscope (AFM) were utilized to investigate the efficiency in different hybridization cases and their corresponding depth changes on the chips. The sequences of two targets were designed to be fully complementary to their shared DNA probe in a coaxial stacking configuration. In other words, after the first DNA target is hybridized (pre-hybridizing) onto the probe, the second one is stacked onto the non-hybridized region of the same probe. The pre-hybridizing and the second DNA targets were distinguished by two distinct fluorescent dyes. The enhancement of the hybridization efficiency was investigated through the comparison between the stacking and individual hybridization configurations. AFM was used to measure the depths of two probes at different steps of hybridization. The results indicated that the depths increased as the hybridization proceeded. Probe#1, pre-hybridizing close to the chip surface, obtained a thicker depth than the other probe pre-hybridizing away from the chip surface, Probe#2. A hypothesis was proposed to explain how the depth variation was associated with the observed hybridization efficiency.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3