A Projection-Based Locality-Sensitive Hashing Technique for Reducing False Negatives

Author:

Lee Keon Myung1

Affiliation:

1. Chungbuk National University

Abstract

It is challenging to efficiently find similar pairs of objects when the number of objects is huge. The locality-sensitive hashing techniques have been developed to address this issue. They employ the hash functions to map objects into buckets, where similar objects have high chances to fall into the same buckets. This paper is concerned with a locality-sensitive hashing technique, the projection-based method, which is applicable to the Euclidean distance-based similar pair identification problem. It proposes an extended method which allows an object to be hashed to more than one bucket by introducing additional hashing functions. From the experimental studies, it has been shown that the proposed method could provide better performance compared to the projection-based method.

Publisher

Trans Tech Publications, Ltd.

Reference13 articles.

1. A. Rajaraman and J. D. Ullman: Mining of Massive Datasets, Cambridge University Press (2012).

2. U. Manber: Finding similar files in a large file system, Proc. USENIX Conference (1994) 1–10.

3. A. Z. Broder: On the resemblance and containment of documents, Proc. Compression and Complexity of Sequence (1997) 21–29.

4. A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher: Min-wise independent permutations, ACM Symposium on Theory of Computing (1998) 327–336.

5. A. Andoni and P. Indyk: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions, Comm. ACM, 51(1) (2008) 117–122.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3