Fast Fuzzy Search for Mixed Data Using Locality Sensitive Hashing

Author:

Lee Kyung Mi1,Lee Keon Myung1

Affiliation:

1. Chungbuk National University and ITRC

Abstract

The drastic increase in data volume strongly demands efficient search techniques for similar data to queries. It is sometimes useful to specify data of interest with fuzzy constraints. When data objects contain both numerical and categorical attributes, it is usually not easy to define commonly-accepted distance measures between data objects. With no efficient indexing structure, it costs much to search for specific data objects because a linear search needs to be conducted over the whole data set. This paper proposes a method to use locality sensitive hashing technique and fuzzy constrained queries to search for interesting ones from big data. The method builds up a locality sensitive hashing-based indexing structure only with constituting continuous attributes, collects a small number of candidate data objects to which query is examined, and then evaluates their satisfaction degree to fuzzy constrained query so that data objects satisfying the query are determined.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3