Statistical Thermodynamics and Kinetics of Long-Range Order in Metal-Doped Graphene

Author:

Radchenko Taras M.1,Tatarenko Valentin A.1

Affiliation:

1. National Academy of Sciences of the Ukraine (N.A.S.U.)

Abstract

The statistical-thermodynamics and kinetics models of atomic ordering in a metal-doped graphene (binary two-dimensional planar graphene-type crystal lattice) at 1/8, 1/4, and 1/2 stoichiometries are proposed. Impossibility of (completely) atomic-ordered distribution at 1/6 and 1/3 stoichiometries is ascertained in a graphene-type crystal lattice (in case of a short-range interatomic interactions at least). If a graphene is doped by the short-range interacting metal atoms, the superstructures described only by a one LRO parameter are possible; and if it is doped by the long-range interacting metal atoms, the new superstructures with the two or three LRO parameters may appear as well. If stoichiometry is 1/4, the structure has a one long-range order (LRO) parameter is more thermodynamically favorable than those have one or two LRO parameters. It is established that kinetics curves of LRO parameters can be non-monotonic for structures where there are two or three LRO parameters (because graphene-type lattice contains two sublattices, and mixing energy is different for each of them). It is shown that the most ordered is structure with equal atomic fractions of carbon and metal atoms, while the least one is structure with a maximal difference of carbon and metal atoms. Kinetics results confirm statistical-thermodynamic ones: firstly, equilibrium values of LRO parameter coincide within the framework of both models, secondly, equilibrium (and instantaneous) value of LRO parameter in a nonstoichiometric binary graphene-type structure (where atomic fraction of a doping component deviates from the stoichiometry to the side of the higher concentrations) may be higher than it is in a stoichiometric one. The dominance of the same physical mechanisms of atomic ordering in both mixed nanosystems and macrosystems is assumed.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3