From Nickel Ore to Ni Nanoparticles in the Extraction Process: Properties and Application

Author:

Abstract

Laterite nickel ore is a mineral rock, which contains iron–nickel oxide compounds. One processing technology proposed to treat the ore is the Caron process. In general, the Caron process combines pyrometallurgical and hydrometallurgical stages. In the pyrometallurgical step, the ore mixed with reductant is heated up to 1800 °C in a rotary kiln-electric furnace to transform iron–nickel oxide into iron–nickel alloy. In the hydrometallurgical stage, nickel has to be dissolved selectively using ammonia solution (alkaline). The further process is aimed to separate and purify the nickel in ammonia solution using solvent extraction and precipitation. The disadvantages of the pyrometallurgical stage in the Caron process include high-energy consumption, low economic value, and technical problems such as partially melted material, which hinders the further process. While in the hydrometallurgical stage, the extensive use of ammonia causes an environmental impact. Selective reduction is proposed to solve problems in the pyrometallurgical stage. Selective reduction is a process favouring the formation of iron oxide to obtain high nickel content in an intermediate product with less energy consumption. An additive is added to the ore to reduce selectively the nickel and decrease the reaction temperature. To solve the environmental impact of ammonia, a novel and safer chemical is proposed as a substitute — the monosodium glutamate (MSG). Selective reduction combined with alkaline leaching using MSG is proposed as an alternative to the Caron method. Precipitation is employed further to purify the nickel that results in nickel nanoparticles with 90–95 wt.% purity.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Metals and Alloys,Surfaces, Coatings and Films,Fluid Flow and Transfer Processes,Condensed Matter Physics,Materials Science (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3