Affiliation:
1. Loughborough University
Abstract
Efficient machining of advanced Ti- and Ni-based alloys, which are typically difficult-to-machine, is a challenge that needs to be addressed by the industry. During a typical machining operation of such alloys, high cutting forces imposed by a tool on the work-piece material lead to severe deformations in the process zone, along with high stresses, strains and temperatures in the material, eventually affecting the quality of finished work-piece. Conventional machining (CT) of Ti- and Ni-based alloys is typically characterized by low depths of cuts and relatively low feed rates, thus adversely affecting the material removal rates (MRR) in the machining process. In the present work, a novel machining technique, known as Ultrasonically Assisted Turning (UAT) is shown to dramatically improve machining of these intractable alloys. The developed machining process is capable of high MRR with an improved surface quality of the turned work-piece. Average cutting forces are significantly lower in UAT when compared to those in traditional turning techniques at the same machining parameters, demonstrating the capability of vibration-assisted machining as a viable machining method for the future.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献