Finite Element Modelling to Predict Equivalent Stiffness of 3D Space Frame Structural Joint Using Circular Beam Element

Author:

Yob Mohd Shukri1,Mansor Shuhaimi2,Sulaiman Razali2

Affiliation:

1. Universiti Selangor (UNISEL)

2. Universiti Teknologi Malaysia

Abstract

In automotive industry, thin walled beam is widely used to build vehicles structure. Vehicle structure is built by joining thin walled beams using various welding techniques. The usage of thin walled structure in automotive is important to improve vehicle performance by offering better strength-to-weight ratio. However the application of thin walled structure will cause few drawbacks to vehicle structure. When thin walled beam or structure is loaded with compression load, at certain limit it will undergo local or global buckling. Another problem is when thin walled beam is joined to other thin walled beams, it will show unexpected deformation which called joint flexibility. Both phenomena will cause numerical and analytical model to predict stiffness of structure tend to deviate from experimental result. In vehicle structure fabrication 3D space frame is used a lot. As a case study for this application, area around car bulkhead where cross member, side sill and A pillar are connected to each other at right angle is studied. The intention of this research work is to produce validated finite element model to predict equivalent stiffness of 3D space frame structural joint. Finite element, shell element is most common technique used to model the joined structure. However it is known that shell model cannot produce good result. In this result work, modelling of equivalent stiffness for 3D space frame structural joint is presented. The result shows, using this model the accuracy is about 65%. New modelling technique is proposed to increase the accuracy based on solid model. By introducing circular beam elements at welding area, it is found that accuracy improves up to 90%.

Publisher

Trans Tech Publications, Ltd.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3