Micro Electroformed Ni-P Alloy Parts by extended UV-LIGA Technology

Author:

Guo Yu Hua1,Wang Ying Nan2,Xie Long Han3

Affiliation:

1. The Chinese University of Hong Kong

2. Chinese University of Hong Kong

3. South China University of Technology

Abstract

In recent years an increasing interest has grown in using Micro Electro Mechanical System (MEMS) fabrication technology in mechanical timepieces. The UV-LIGA process which combines ultraviolet lithography and electroforming is among micro-production technologies providing exciting possibilities. It has been established as industrial viable for the fabrication of various micromechanical components. Current limitations are that the technology is restricted to the use of nickel. It is too soft (~ 300HV) and has magnetic properties. It is not perfect for the movement of timepieces. However, by adding other materials, e.g. phosphor-Nickel (Ni-P), these alloys have their attractions, being stainless, non-magnetic and very high hardness. As a new technique, details are still being perfected. In this work, the process of Ni-P micro electroforming has been developed to extend UV-LIGA technology. And attempt has been made to investigate the magnetic properties and the hardness of the manufactured Ni-P alloy components. The results showed that the phosphor content can be controlled by different concentration of phosphorous acid (H3PO3) in the electrolyte solution. Corresponding properties have been analyzed which shows good hardness and lower magnetic properties. When the phosphorous content reaches over 12 wt%, the Ni-P alloy is with non-magnetic properties while pure nickel is ferromagnetic material. And the hardness of electroformed Ni-P alloy is about 600 HV and can be above 1000 HV after special heat treatment.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3