Aid of End-Milling Condition Decision Using Data Mining from Tool Catalog Data for Rough Processing

Author:

Kodama Hiroyuki1,Hirogaki Toshiki1,Aoyama Eiichi1,Ogawa Keiji2

Affiliation:

1. Doshisha University

2. University of Shiga Prefecture

Abstract

The uses of data mining methods to support workers decide on reasonable cutting conditions has been investigated in this work. The aim of our research is to find new knowledge by applying data mining techniques to a tool catalog. Hierarchical and non-hierarchical clustering of catalog data as well as multiple regression analysis was used. The K-means method was used and on the shape presented in the catalog data and grouped end mills from the viewpoint of the tool's shape, which here means the ratio of dimensions has been focused. The numbers of variables were decreased using hierarchical cluster analysis. In addition, an expression for calculating the better cutting conditions was found and the calculated values were compared with the catalog values. There were three cutting conditions: conditions recommended in the catalog, conditions derived by data mining, and proven cutting conditions for die machining (rough processing).

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3