Affiliation:
1. Xiamen University of Technology
Abstract
Owing to its unique optical and electronic characteristics, two-dimensional MoS2 has been widely explored in the past few years. Using first-principle calculations, we shed light on that the substitutional doping of Co can induce the half-filled intermediate states in the band gap of monolayer MoS2. The calculated absorption spectrum presents an enhancement of the low-energy photons (0.8 eV–1.5 eV), which is desired for intermediate-band solar cells. When the doping concentration increases, the reflectivity of the infrared and visible light (0.8 eV-4.0 eV) reduces, resulting in an improved photovoltaic efficiency of the material. Our results shed light on the application of heavily Co-doped MoS2 as intermediate band solar cell material.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献