Effect of Mechanical Alloying on Structural and Electrical Properties of (P2O5)(x)-(Y2O3)(0.03)-(ZrO2)(0.97) Electrolyte

Author:

Al-Attar Abeer Farouk Abbas1

Affiliation:

1. University of Technology-Department of Materials Engineering

Abstract

Pentavalent phosphorous oxide doped yttria-stabilized zirconia (P2O5)X-(Y2O3)0.03-(ZrO2)0.97 with x=0.06 mol.% was achieved via an economical technique using mechanical alloying (MA) technique. Three types of nanocomposite powders of electrolyte were produced by high-energy ball milling with different milling times. The phases of synthesized electrolyte powders and sintered electrolytes were illustrated by X-ray diffraction (XRD). The average particle sizes of powders indicated around (360, 245, and 48) nm at milling duration (1, 10, and 45) hrs, respectively. The XRD analysis results of 1 h MA electrolyte powder obtained tetragonal ZrO2, while the 45 h MA electrolyte manifested a minority phase of monoclinic ZrO2. Then, the XRD of the sintered electrolyte with the optimum electrical properties appeared two phases. The major phase of the tetragonal zirconium yttrium oxide and a minor phase was a monoclinic zirconium oxide. The average grain sizes of the three types of the sintered manufacturing electrolytes were (7.638, 2.642, and 1.245 µm) after the mechanical alloying duration of (1, 10, and 45) hrs, respectively and sintered at 1873 °K. The DC conductivity (σ) studied corresponded to the influence of milling times on the microstructure for each sintered electrolyte. From the results, the synthesized sintered electrolyte with a long MA duration gave a maximum DC (σ) 1.03E-1S.m. And, the DC conductivity (σ) was 1.11E-02 of electrolyte produced with 10 hr mechanical alloying. Otherwise, the lower DC conductivity got with the electrolyte prepared in the lowest milling duration was 8.9 E-2 S.m.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3