Effect of Laser Shock Peening on Fatigue Life at Stress Raiser Regions of a High-Speed Micro Gas Turbine Shaft: A Simulation Based Study

Author:

Pretorius Jan G.1ORCID,Desai Dawood A.1,Snedden Glen C.2

Affiliation:

1. Tshwane University of Technology

2. Council for Scientific and Industrial Research (CSIR)

Abstract

Fatigue failure due to stress raiser regions on critical rotating components in gas turbine engines, such as the shaft, is a crucial aspect. Methods to reduce these stresses and improve fatigue life are a source of ongoing research. Laser shock peening is a method where compressive residual stresses are imparted on the stress raisers of such components. However, numerical based studies on multiple laser shock peening applied to stress raisers is under-researched. Hence, this study will attempt to predict the fatigue life at fillet radii step induced stress raiser regions on a high-speed gas turbine engine shaft by utilization of laser shock peening. The objective of this study was achieved by developing a more computational efficient finite element model to mimic the laser shock peening process on the fillet radii step induced stress raiser regions of a shaft. A modified laser shock peening simulation method for effective prediction of the residual stress field was introduced. Furthermore, the fatigue life improvement due to laser shock peening was predicted by employing Fe-safe fatigue software. From the results, the modified laser shock peening simulation method provided accurate prediction of the residual stress field with a reduced computational time of over 68% compared to conventional methods. The fatigue life revealed an improvement of 553% due to laser shock peening, which is comparable to similar findings in the literature. Hence, from the findings and results achieved, the developed finite element model can be an appropriate tool to assist in the fatigue life estimation of laser shock peening applied to stress raisers.

Publisher

Trans Tech Publications, Ltd.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3