Effect of Laser Shock Peening on the Fatigue Life of 1Cr12Ni3Mo2VN Steel for Steam Turbine Blades

Author:

Tang Zhuolin1,Gao Jiashun2,Xu Zhilong1,Guo Bicheng1,Jiang Qingshan1ORCID,Chen Xiuyu1ORCID,Weng Jianchun1,Li Bo1,Chen Junying1,Zhao Zhenye1

Affiliation:

1. College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361000, China

2. College of Marine Engineering, Jimei University, Xiamen 361000, China

Abstract

In the present study, laser shock peening (LSP) was employed to enhance the rotating bending fatigue life of 1Cr12Ni3Mo2VN martensitic stainless steel used in steam turbine blades, addressing the issue of insufficient fatigue performance in these components. The aim of this study was to investigate the effect of LSP on the microhardness, residual stress, and rotating bending fatigue life of 1Cr12Ni3Mo2VN steel samples. The microhardness of LSP-treated samples was increased by 10.5% (LSP-3J sample) and 15.3% (LSP-4J sample), respectively, compared to high-frequency hardening samples. The residual compressive stress of the LSP-4J sample was the largest, reaching −689 MPa, and the affected layer depth was about 800 μm. Fatigue tests showed that the number of cycles at the fracture point for the LSP-3J and LSP-4J samples increased by 163% and 233%, respectively. The fatigue fracture morphology of the four samples showed that the microhardness and residual compressive stress distribution introduced by LSP could effectively inhibit the initiation of surface cracks, slow down the crack growth rate, and improve the rotating bending fatigue life of 1Cr12Ni3Mo2VN.

Funder

Natural Science Foundation of Fujian, China

Scientific research project of Fujian Provincial Department of Finance, China

Major Science and Technology Project of Xiamen, Fujian, China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3