Design and Research of Double-Layered Cemented Carbide Novel High-Pressure Die

Author:

Li Sheng Hua1,Li Jin Liang1,Ge Jian Zhang2,Gao Xiang2

Affiliation:

1. College of Mechanical Engineering, Yanshan University

2. Hebei Heavy-duty Intelligent Manufacturing Equipment Technology Innovation Center

Abstract

To improve the pressure-bearing capacity, a novel high-pressure die with cemented carbide as the first layer of supporting ring was designed. The novel high-pressure die increases the ultimate load-bearing capacity of the high-pressure die by increasing the pretension of the tungsten carbide cylinder. As the volume of the cemented carbide increases, the difficulty of manufacturing increases, therefore, to reduce the manufacturing difficulty of the cemented carbide supporting ring and reduce the shear stress of the supporting ring, the cemented carbide supporting ring is splited. And through reasonable derivation calculations, the calculation formula suitable for the optimal interference amount of the high-pressure die is obtained. The numerical analysis results show that: when a pressure of 6.2 GPa is applied on the inner wall of the tungsten carbide cylinder, high-pressure die mold that uses cemented carbide as the first layer of support ring (hereinafter referred to as double-layered cemented carbide novel high-pressure die) is lower than the ordinary high-pressure die in term of circumferential stress by 93.34%. In terms of von Mises stress by 21.4%, and term of maximum shear stress by 21.37%. The three principal stress images of the two molds are drawn, which proved that the double-layered hard alloy novel high-pressure die can fully exert the performance of the material and can withstand greater pressure.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3