Author:
Yi Zhuo,Fu Wenzhi,Li Mingzhe,Zhao Liang,Wang Liyan,Li Rui
Abstract
A novel double-layered split die (DLSD) was designed to have higher pressure-bearing capacity and larger sample cavity volume. In DLSD, the cylinder and first layer supporting ring are split into several blocks. It has a prismatic cylinder and a quasi-prismatic sample cavity. The stress distribution of DLSD was investigated and compared with that of the conventional belt-type die (BTD) and a single-layered split die (SLSD) by the finite element method. The results show that the SLSD can only decrease the stress of the cylinder as there remains significant stress on the first layer supporting ring. However, the novel DLSD can, remarkably, decrease the stress placed on the cylinder and first layer supporting ring simultaneously due to the improvement of the stress states. Additionally, the maximum stress and pressure-bearing capacity of DLSD with different numbers of split blocks were further investigated. It is concluded that the maximum stress of the cylinder increases gradually with an increase in the number of split blocks. Meanwhile, the pressure-bearing capacity decreases accordingly. The experiments show that the pressure-bearing capacities of DLSD with 4 and 8 split blocks are all remarkably higher than that of the BTD. DLSD with 4 split blocks has relatively higher pressure-bearing capacity. This work presents a promising high-pressure die with a double-layered split structure for the synthesis of superhard materials.
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献