On the Possibilities of Intelligence Implementation in Manufacturing: The Role of Simulation

Author:

Delgado Sobrino Daynier Rolando1,Košťál Peter1,Cagáňová Dagmar2,Čambál Milos2

Affiliation:

1. Slovak University of Technology in Bratislava

2. Slovak University of Technology

Abstract

Over the years, the world of manufacturing has witnessed significant work in the area of Intelligent Manufacturing. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Closely following all this and due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: Intelligent Manufacturing, the present paper emerges with the main aim of contributing under a this new intelligent denomination to the design and analysis of the material flow in either systems, cells or workstations. For this, besides offering a conceptual basis in some of the key points to be taken into account and some general principles to consider in the design and analysis of the material flow, also some tips on how to define other possible alternative material flow scenarios and a classification of the states a system, cell or workstation are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a detailed layout, other figures and a few expressions which could help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.

Publisher

Trans Tech Publications, Ltd.

Reference12 articles.

1. Gausemeier, J. and Gehnen, G. (1998). Intelligent material flow by decentralized control networks. Journal of Intelligent Manufacturing. Volume 9, Number 2, 141-146, DOI: 10. 1023/A: 1008815928799.

2. Kosturiak, J. & Gregor, M. (1998). FMS Simulation: Some Experience and Recommendations, Simulation Practice and Theory, Vol. 6, Issue 5, July 15, 1998, 423-442.

3. Mudriková, A., Delgado Sobrino, D. R. and Košťál, P. (2010). Planning of material flow in flexible production systems. In: Annals of DAAAM and Proceedings of DAAAM Symposium. 20-23rd October 2010, Zadar, Croatia - ISSN 1726-9679. - Vol. 21, No 1.

4. Velíšek, K., Šebeňová, S., Ružarovský, R. (2010). Transport systems in flexible manufacturing. In I. Central European Conference on Logistics: 26 November 2010, Miskolc, Hungary. Miskolc: University of Miskolc, 2010, s. 5. ISBN 978-963-661-946-6.

5. Xu, D. (2001). Hardware-based Parallel Simulation of Flexible Manufacturing Systems. Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3