Optimization of a Totally Fiber-Reinforced Plastic Composite Sandwich Construction of Helicopter Floor for Weight Saving, Fuel Saving and Higher Safety

Author:

Al-Fatlawi Alaa,Jármai Károly,Kovács GyörgyORCID

Abstract

The application of fiber-reinforced plastic (FRP) composites as structural elements of air vehicles provides weight saving, which results in a reduction in fuel consumption, fuel cost, and air pollution, and a higher speed. The goal of this research was to elaborate a new optimization method for a totally FRP composite construction for helicopter floors. During the optimization, 46 different layer combinations of 4 different FRP layers (woven glass fibers with phenolic resin; woven glass fibers with epoxy resin; woven carbon fibers with epoxy resin; hybrid composite) and FRP honeycomb core structural elements were investigated. The face sheets were composed of a different number of layers with cross-ply, angle-ply, and multidirectional fiber orientations. During the optimization, nine design constraints were considered: deflection; face sheet stress (bending load, end loading); stiffness; buckling; core shear stress; skin wrinkling; intracell buckling; and shear crimping. The single-objective weight optimization was solved by applying the Interior Point Algorithm of the Matlab software, the Generalized Reduced Gradient (GRG) Nonlinear Algorithm of the Excel Solver software, and the Laminator software. The Digimat-HC software solved the numerical models for the optimum sandwich plates of helicopter floors. The main contribution is developing a new method for optimizing a totally FRP composite sandwich structure—due to its material constituents and construction—that is more advantageous than traditional helicopter floors. A case study validated this fact.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3