Observation as Learning Methods in Simple Visual System of Vehicle Control

Author:

Wójcik Krzysztof1

Affiliation:

1. Cracow University of Technology

Abstract

The goal of the presented article is a description of an inductive method of knowledge structure creating, which may be applied in a system of an autonomic vehicle control. The paper deals with the relatively simple task of industrial vehicles control, which operate in a specific environment. The information about the environment is achieved from camera mounted on the vehicle. An analysis of the image leads to the construction the knowledge in a form of structure of concepts (i.e. classes) and objects. The proposed approach is illustrated by simple example. The paper describes crucial problems of the proposed knowledge creation, especially concerning initial assumptions about visible phenomena and problems of the knowledge updating (learning). The article attempts to formulate conditions determining a successful usage of the proposed methodology. The main condition is building an efficient methods of searching the proper concept structure.

Publisher

Trans Tech Publications, Ltd.

Reference12 articles.

1. J. Davies, R. Studer, P. Warren (eds. ), Semantic Web Technologies Trends and Research in Ontology-based Systems, John Wiley & Sons Ltd, (2006).

2. G.L. Foresti, V. Murino and C. Regazzoni, Vehicle recognition and tracking from road image sequences, Vehicular Technology, IEEE Transactions, Volume 48, Issue 1, (1999).

3. R. S. Michalski, R. Steep, Learning from Observation: Conceptual Clustering, Chapter in the book: R. S. Michalski, J.G. Carbonell, T.M. Mitchell (eds. ), Machine Learning: An Artificial Intelligence Approach, Vol. 2. Morgan Kaufmann, San Mateo, (1986).

4. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edn, Prentice Hall, Englewood Cliffs, (2010).

5. J. Serres, D. Dray, F. Ruffier and N. Franceschini, A vision-based autopilot for a miniature air vehicle: joint speed control and lateral obstacle avoidance, Autonomous Robots, Volume 25, Issue 1-2, Springer, (2008).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3