Study on the Young’s Modulus of Red Blood Cells Using Atomic Force Microscope

Author:

Lien Cheng Chang1,Wu Meng Chien1,Ay Chyung1

Affiliation:

1. National Chiayi University

Abstract

The force-displacement curves of rat’s red blood cells (RBC) were measured by atomic force microscope (AFM) in this study, and the young’s modulus of RBC were calculated. The different speed and loads of probe on AFM was conducted to exam the effect of young’s modulus in RBC. Furthermore, the relationship between young’s modulus of RBC and different depth of indentation from force-displacement curves were investigated. The experimental results and analysis showed that when probe’s maximum load was 5 nN and the velocity was set for 1, 5, 10 and 20 μm/s, the young’s modulus of normal red blood cells for probe down measurements to AFM were 129.56 ± 42.80, 141.56 ± 31.15, 147.90 ± 24.35 and 149.69 ± 29.27 kPa, respectively. It represented that the young’s modulus of normal red blood cells depended on probe’s velocity. Then when probe’s velocity was 1 μm/s and the load was changed to 1, 5 and 10 nN, the young’s modulus of normal red blood cells were measured for 41.45 ± 22.64, 82.72 ± 53.99 and 202.40 ± 16.01 kPa, respectively. It represented that the young’s modulus of normal red blood cells depended on the probe’s load. On the other side, the results of force-displacement curves exam demonstrated that the deeper of probe indented in cells, the measured young’s modulus of normal red blood cells would be increased more.

Publisher

Trans Tech Publications, Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3