The Prediction of Grounding Grid Corrosion Rate Using Optimized RBF Network

Author:

Song Chun Feng1,Hou Yuan Bin1,Du Jing Yi1

Affiliation:

1. Xi’an University of Science and Technology

Abstract

Because the grounding grid corrosion rate has the property of nonlinearity and uncertainty, it is very difficult for us to predict precisely. The approach is proposed that ant colony clustering algorithm is combined with RBF neural network to predict the grounding grid corrosion rate, using ant colony clustering algorithm to get the center of hidden layer neurons. To find the best clustering result, local search is applied in ant colony algorithm. This model has good performance of strong local generalization abilities and satisfying accuracy. At last, it is proved with lots of experiments that the application is fairly effective.

Publisher

Trans Tech Publications, Ltd.

Reference13 articles.

1. Yugen Liu, Lixiang Wu, Shuo Wang. Practicality analysis for optimized erosion diagnosis of large and grid medium-scale grounding grid [J]. Journal of Chongqing University, 31(4), 2008, 417-420.

2. Wenjing Ma, Bo Zhang, Xushuang Song. Study on corrosion diagnosis method for grounding network based on regularized least square method [J]. Heilongjing Electric Power, 34(4), 2012, 278-284.

3. Yugeng Lin, Yongxi Teng, Xianlu Chen. A method for corrosion diagnosis of grounding grid [J]. High Voltage Engineering, 30(6), 2004, 19-21.

4. Lei Xu, Lin Li. Fault diagnosis for grounding grids based on electric network theory [J]. Transactions of China Electro Technical Society, 27(10), 2012, 270-276.

5. Yang Liu, Xiang Cui, Zhibin Zhao. Design and application of testing magnetic field system for corrosion diagnosis of grounding grids in substation [J]. Transactions of China Electro Technical Society, 24(1), 2009, 176-182.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3