Research Progress of Oilfield Development Index Prediction Based on Artificial Neural Networks

Author:

Chen ChenglongORCID,Liu Yikun,Lin Decai,Qu Guohui,Zhi Jiqiang,Liang ShuangORCID,Wang FengjiaoORCID,Zheng Dukui,Shen AnqiORCID,Bo Lifeng,Zhu Shiwei

Abstract

Accurately predicting oilfield development indicators (such as oil production, liquid production, current formation pressure, water cut, oil production rate, recovery rate, cost, profit, etc.) is to realize the rational and scientific development of oilfields, which is an important basis to ensure the stable production of the oilfield. Due to existing oilfield development index prediction methods being difficult to accurately reflect the complex nonlinear problem in the oil field development process, using the artificial neural network, which can predict the oilfield development index with the function of infinitely close to any non-linear function, will be the most ideal prediction method at present. This article summarizes four commonly used artificial neural networks: the BP neural network, the radial basis neural network, the generalized regression neural network, and the wavelet neural network, and mainly introduces their network structure, function types, calculation process and prediction results. Four kinds of artificial neural networks are optimized through various intelligent algorithms, and the principle and essence of optimization are analyzed. Furthermore, the advantages and disadvantages of the four artificial neural networks are summarized and compared. Finally, based on the application of artificial neural networks in other fields and on existing problems, a future development direction is proposed which can serve as a reference and guide for the research on accurate prediction of oilfield development indicators.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference81 articles.

1. Mining knowledge of oilfield development index prediction model with deep learning;Zhong;J. Southwest Pet. Univ.,2020

2. Method for predicting late stage indicators of oilfield development based on uncertainty research;Wenchao;Pet. Geol. Recovery Effic.,2015

3. Application of artificial neural network in recovery prediction of CO2 flooding;Tao;Spec. Oil Gas. Reserv.,2011

4. Box—Behnken Study on Influencing Factors of carbon dioxide oil displacement effect by method;Tao;Fault Block Oil Gas Field,2010

5. Application of artificial neural network in identification of low resistivity reservoirs;Qingjun;Spec. Oil Gas Reserv.,2001

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3