Prediction on Molten Steel End Temperature during Tapping in BOF Based on LS-SVM and PSO

Author:

Yang Wei1,Meng Hong Ji1,Huang Ya Juan1,Xie Zhi1

Affiliation:

1. Northeastern University

Abstract

A new molten steel end temperature prediction model is built employing LS-SVM. To seek the optimal parameters of regularization parameter γ and kernel parameter σ in LS-SVM, an PSO algorithm is also proposed. To test the proposed predictor, the prediction model is applied on practical data from Fujian Sangang steelmaking collected in 100t BOF, and the validation is carried on the performance of the prediction. The model overcomes the blindness and the burden in time consuming of cross validation method, and at the same time, inherits the strong learning ability from small sample and the characteristics of simple calculation of LS-SVM. In the LSSVM optimized by PSO test cases, the Maximum Absolute Error (MAE) and the Root Mean Squares Error (RMSE) are the lowest, and the Pearson Relative Coefficient (PRC) is the highest. The results suggest that the LS-SVM optimized by PSO model can be extended to end-point judgment applications in achieving greater forecasting accuracy and quality.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3