State of the art in applications of machine learning in steelmaking process modeling
Author:
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Metals and Alloys,Geochemistry and Petrology,Mechanical Engineering,Mechanics of Materials
Link
https://link.springer.com/content/pdf/10.1007/s12613-023-2646-1.pdf
Reference134 articles.
1. T.M. Mitchell, Machine Learning, McGraw-Hill. New York, 1997, p. 1.
2. G.F. Pan, F.Y. Wang, C.L. Shang, et al., Advances in machine learning- and artificial intelligence-assisted material design of steels, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1003.
3. Z.J. Xu, Z. Zheng, and X.Q. Gao, Operation optimization of the steel manufacturing process: A brief review, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1274.
4. T. Xu, G. Song, Y. Yang, P.X. Ge, and L.X. Tang, Visualization and simulation of steel metallurgy processes, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1387.
5. L. Lin and J.Q. Zeng, Consideration of green intelligent steel processes and narrow window stability control technology on steel quality, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1264.
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rapid prediction of flow and concentration fields in solid-liquid suspensions of slurry electrolysis tanks;International Journal of Minerals, Metallurgy and Materials;2024-08-28
2. Predicting the Liquid Steel End-Point Temperature during the Vacuum Tank Degassing Process Using Machine Learning Modeling;Processes;2024-07-06
3. Multi-Output Prediction Model for Basic Oxygen Furnace Steelmaking Based on the Fusion of Deep Convolution and Attention Mechanisms;Metals;2024-06-29
4. Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators;International Journal of Minerals, Metallurgy and Materials;2024-05-27
5. Critical precipitation behavior of MnTe inclusions in resulfurized steels during solidification;International Journal of Minerals, Metallurgy and Materials;2024-04-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3